In-situ Electric Field-Induced Modulation of Photoluminescence in Pr-doped Ba0.85Ca0.15Ti0.90Zr0.10O3 Lead-Free Ceramics
نویسندگان
چکیده
Luminescent materials with dynamic photoluminescence activity have aroused special interest because of their potential widespread applications. One proposed approach of directly and reversibly modulating the photoluminescence emissions is by means of introducing an external electric field in an in-situ and real-time way, which has only been focused on thin films. In this work, we demonstrate that real-time electric field-induced photoluminescence modulation can be realized in a bulk Ba0.85Ca0.15Ti0.90Zr0.10O3 ferroelectric ceramic doped with 0.2 mol% Pr(3+), owing to its remarkable polarization reversal and phase evolution near the morphotropic phase boundary. Along with in-situ X-ray diffraction analysis, our results reveal that an applied electric field induces not only typical polarization switching and minor crystal deformation, but also tetragonal-to-rhombohedral phase transformation of the ceramic. The electric field-induced phase transformation is irreversible and engenders dominant effect on photoluminescence emissions as a result of an increase in structural symmetry. After it is completed in a few cycles of electric field, the photoluminescence emissions become governed mainly by the polarization switching, and thus vary reversibly with the modulating electric field. Our results open a promising avenue towards the realization of bulk ceramic-based tunable photoluminescence activity with high repeatability, flexible controllability, and environmental-friendly chemical process.
منابع مشابه
Giant Strains in Non-Textured (Bi1/2 Na1/2 )TiO3 -Based Lead-Free Ceramics.
Giant electric-field-induced strain of 0.70%, corresponding to a d33 * value of 1400 pm V(-1) , is observed in a lead-free (Bi1/2 Na1/2 )TiO3 -based polycrystalline ceramic. This is comparable to the properties of single crystals. An in situ transmission electron microscopy study indicates that the excellent performance originates from phase transitions under the applied electric fields.
متن کاملEnhanced luminescence of Er+3-doped Zinc-Lead-Phosphate Glass embedded SnO2 nanoparticles
Introduction of the nanoparticles in the bulk glass received a large interest due to their versatile application. The composition of Er+3-doped Zinc-Lead-Phosphate glass samples are prepared by melt-quenching technique. The structural and optical properties of phosphate glass have been examined by x-ray diffraction, fie...
متن کاملElectric-field-induced transformation of incommensurate modulations in antiferroelectric Pb0.99Nb0.02[(Zr1â‹TMxSnx)1â‹TMyTiy]0.98O3
Most antiferroelectric ceramics are modified from the prototype PbZrO3 by adding Sn and Ti in conjunction with small amount of Nb or La to optimize their properties. These modifiers introduce unique nanoscale structural feature to the ceramics in the form of incommensurate modulations. It was shown previously that the modulation is strongly responsive to a change in chemical composition or temp...
متن کاملPotassium Sodium Niobate-Based Lead-Free Piezoelectric Multilayer Ceramics Co-Fired with Nickel Electrodes
Although lead-free piezoelectric ceramics have been extensively studied, many problems must still be overcome before they are suitable for practical use. One of the main problems is fabricating a multilayer structure, and one solution attracting growing interest is the use of lead-free multilayer piezoelectric ceramics. The paper reviews work that has been done by the authors on lead-free alkal...
متن کاملLuminescence Properties of Oxyfluoride Glass and Glass Ceramic Doped with Y3 + Ions
Oxyfluoride glass ceramics containing CaF2nano-crystals doped with Y3+ ions were prepared by one-step crystallization of SiO2- Al2O3- CaO- CaF2 glasses at different temperatures. X- ray diffraction (XRD) results have revealed that CaF2 was the only precipitated crystalline phase in glass ceramic samples. According to the XRD results, a glass ceramic was selected as the best sample in order to ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 6 شماره
صفحات -
تاریخ انتشار 2016